TN-02: Statistical Comment on the Study Concept/Prototype Joan F. Hilton, Sc.D. Associate Professor of Biostatistics University of California San Francisco March 16, 2005 # **Preliminary Questions:** - 1. How long should the treatment and follow-up period in trials be? - 2. Can larger numbers of treatments be compared simultaneously with aggressive curtailment for futility? - 3. Can short-term trials be grafted onto long-term trials roll Phase II patients into Phase III studies? - 4. Should trials be powered for large effect sizes or for more moderate effect sizes with monitoring guidelines that could terminate early for an unexpected large effect? - 5. Should trials be powered to rule out adverse effects? Duration of a trial (Q1, Q3) Number of treatments (Q2) Number of patients (Q4, Q5) \rightarrow All depend on the outcome measure! How can we amplify the value of the outcome measure in TN-02? # Idea 1: Use composite endpoints. Example: The Women's Health Initiative prevention trial. ### Idea 2: Use response-adaptive allocation procedure. Example: AML trial comparing CR rates of 2 Experimental treatments with a Control. # The Women's Health Initiative (WHI) Argument: Trials addressing treatment of established disease \rightarrow outcome should be univariate. Trials addressing prevention / early disease \rightarrow outcome should be multivariate. ### Rationale: | Treatment trials | Prevention trials | |--|---| | • Given established disease, intervention should alleviate direct consequences | • Given generally healthy, early disease-
related morbidity & mortality are rare;
intervention should maintain health | | • Intervention benefits should outweigh risks | • Intervention risks may outweigh benefits | | • Intervention effects are typically known;
Trade early benefits for late risks | • Intervention effects may be unknown;
Time courses of benefits and risks may
differ | | \bullet The study is typically replicated | \bullet The study is too large to be replicated | | → Specify a single primary outcome
Estimate primary effect | \rightarrow Consider a collection of endpoints
Estimate broad range of effects | # Other WHI and TN-02 Analogies: Subjects are randomized to more than one intervention component. The intervention components may interact. # Intervention components and their outcomes | WHI | TN-02 | | | | |---------------------------------|---|--|--|--| | Low-fat diet Vs. Usual diet | MMF Vs. Placebo | | | | | ↓ CHD | Affects β cells via B-lymphocytes | | | | | \downarrow Colorectal cancer | Prevents islet allograft rejection | | | | | \downarrow Breast cancer | SAEs | | | | | Hormone replacement Vs. Placebo | DZB Vs. Placebo | | | | | ↓ CHD | Affects β cells via T-lymphocytes | | | | | ↑ Breast cancer | Halts graft-v-host disease | | | | | \downarrow Hip fractures | | | | | | | | | | | # Differences in β -cell retention: Protocol specifies 3 Superiority tests: Alternatively, conduct 2 Superiority tests and 1 Noninferiority test: - For MMF versus MMF+DZB, study DZB effect. - What outcome variable focuses on DZB effect? #### WHI Recommendations: #### 1. Measure benefit in more than one way. - Disease-specific outcome: β cell retention - Global health outcome: A variety of surrogate markers? - Unweighted combination of treatment outcomes - Weighted combination of treatment outcomes; weights - * prediction of T1DM - * strength of evidence for prediction #### Aside 1: Peter O'Brien's Global Test. - 1. Rank each outcome across all subjects in terms of efficacy: $R_{i,1}, \ldots, R_{i,n_E+n_C}$, for $j=1,\ldots,J$. - 2. Replace the raw data with the ranks. - 3. For each patient, sum the ranks across outcomes: $S_i = R_{1,i} + R_{2,i} + ... + R_{J,i}$, for $i = 1, ..., n_E + n_C$. - 4. Test H_0 using these summary data. Advantage: Reduce a J-dim to a 1-dim outcome per subject; independent observations. Disadvantage: To interpret, supplement with sub-groups of tests or individual tests. Note: A large P-value might suggest that some component measures are not sensitive to efficacy, whereas the sub-group analysis might identify those that are and should be studied further. # Aside 2: Latent Variable Modelling. Advantage: Component measures are adjusted for one another but retain interpretability. #### 2. Measure risk in more than one way: - Intervention-targetted outcomes - Global adverse events #### 3. Formal stopping rules: Stop if either benefit or harm. - α -levels may vary. Efficacy examples: - Disease-specific outcome: $\alpha = 0.05$ - Global health outcome: $\alpha = 0.20$ ("supportive" evidence) - Boundaries for benefit and harm needn't be symmetric # 4. Monitor frequently. Planned follow-up in the WHI Trial was 8.5 years. After 5.2 years' mean follow-up, stopped at the 10^{th} analysis: - The boundary for adverse events was crossed. - The global index supported the conclusion of harm. **Example:** AML trial comparing CR rates of 2 Experimental treatments with a Control. Setting: Patients evaluated very soon after randomization for a binary outcome, Complete Response (CR). ### Initial allocation probabilities: Fixed allocation to C, 33%; Adaptive allocation to E_1 versus E_2 , based on relative CR rate (π) . C= idarubicin and cytarabine; $E_1=$ troxacitabine and idarubicin; $E_2=$ troxacitabine and cytarabine | Pt | $\Pr\{C\}$ | n_C | π_C | $\Pr\{E_1\}$ | n_{E_1} | π_{E_1} | $\Pr\{E_2\}$ | n_{E_2} | π_{E_2} | |----|------------|-------|---------|--------------|-----------|-------------|--------------|-----------|-------------| | 1 | 0.33 | 0 | | 0.33 | 1 | 0 | 0.33 | 0 | • | | 2 | 0.33 | 1 | 1.000 | 0.32 | 1 | | 0.34 | 0 | | | 3 | 0.33 | 1 | | 0.32 | 2 | 0 | 0.35 | 0 | | | 4 | 0.33 | 2 | 0.500 | 0.30 | 2 | | 0.37 | 0 | | | 5 | 0.33 | 3 | 0.333 | 0.28 | 2 | • | 0.38 | 0 | | | 6 | 0.33 | 4 | 0.500 | 0.28 | 2 | • | 0.39 | 0 | | | 7 | 0.33 | 5 | 0.400 | 0.27 | 2 | | 0.39 | 0 | | | 8 | 0.33 | 5 | • | 0.23 | 3 | 0 | 0.44 | 0 | | | 9 | 0.33 | 5 | • | 0.20 | 4 | 0 | 0.47 | 0 | | | 10 | 0.33 | 5 | • | 0.24 | 4 | • | 0.43 | 1 | 1.000 | | 11 | 0.33 | 5 | • | 0.17 | 4 | • | 0.50 | 2 | 0.500 | | 12 | 0.33 | 5 | • | 0.17 | 4 | ٠ | 0.50 | 3 | 0.333 | | 13 | 0.33 | 5 | • | 0.20 | 4 | • | 0.47 | 4 | 0.250 | | 14 | 0.33 | 5 | | 0.10 | 5 | 0 | 0.57 | 4 | • | | 15 | 0.33 | 5 | • | 0.10 | 5 | | 0.57 | 5 | 0.400 | | 16 | 0.33 | 6 | 0.333 | 0.11 | 5 | | 0.56 | 5 | | | 17 | 0.33 | 6 | • | 0.11 | 5 | | 0.56 | 6 | 0.500 | | 18 | 0.33 | 6 | • | 0.11 | 5 | | 0.55 | 7 | 0.429 | | 19 | 0.33 | 6 | • | 0.13 | 5 | | 0.54 | 8 | 0.375 | | 20 | 0.33 | 7 | 0.429 | 0.14 | 5 | | 0.53 | 8 | | | 21 | 0.33 | 8 | 0.500 | 0.18 | 5 | | 0.49 | 8 | | | 22 | 0.33 | 9 | 0.556 | 0.21 | 5 | • | 0.46 | 8 | | | 23 | 0.33 | 10 | 0.600 | 0.09 | 5 | • | 0.58 | 8 | | | 24 | 0.33 | 11 | 0.636 | 0.07 | 5 | • | 0.59 | 8 | | ### Late allocation probabilities: After patient 24 responded, drop Arm E_1 (lack of efficacy). Adaptive allocation to C versus E_2 , based on relative CR rate (π) . # Potential problem: No guarantee that groups are balanced by prognostic covariates Patients in E_1 could be at highest risk of failure. ### Solution: Use group-sequential methods instead: retain advantages of randomization, but monitor results and drop arms as warranted C= idarubicin and cytarabine; $E_1=$ troxacitabine and idarubicin; $E_2=$ troxacitabine and cytarabine | Pt | $\Pr\{C\}$ | n_C | π_C | $\Pr\{E_1\}$ | n_{E_1} | π_{E_1} | $\Pr\{E_2\}$ | n_{E_2} | π_{E_2} | |----|------------|-------|---------|--------------|-----------|-------------|--------------|-----------|-------------| | 25 | 0.87 | 12 | 0.583 | _ | 5 | | 0.13 | 8 | | | 26 | 0.87 | 12 | | _ | 5 | | 0.13 | 9 | 0.333 | | 27 | 0.96 | 12 | | _ | 5 | | 0.04 | 10 | 0.300 | | 28 | 0.96 | 13 | 0.615 | _ | 5 | | 0.04 | 10 | | | 29 | 0.96 | 14 | 0.571 | _ | 5 | • | 0.04 | 10 | | | 30 | 0.96 | 15 | 0.600 | _ | 5 | | 0.04 | 10 | | | 31 | 0.96 | 16 | 0.562 | _ | 5 | | 0.04 | 10 | | | 32 | 0.96 | 16 | | _ | 5 | | 0.04 | 11 | 0.273 | | 33 | 0.96 | 17 | 0.529 | _ | 5 | | 0.04 | 11 | | | 34 | 0.96 | 18 | 0.556 | _ | 5 | | 0.04 | 11 | | | · | | 18 | 0.556 | | 5 | 0.0 | | 11 | 0.273 | # Potential problem: What effect does the sample-size imbalance have on power level? Figure 1: Example. For test statistic based on $\hat{\Delta}$, with $\{\pi_C, \Delta\} = \{0.03, 0.05\}$ and $\alpha = 0.05$, $\beta = 0.20$, the overall sample size, $N = n_E + n_C$ - is at its minimum (dark shading) when $\theta = n_E/n_C \in (0.73, 1.35)$ - is within 5% of its minimum (light shading) when $\theta = n_E/n_C \in (0.53, 1.54)$. ### Giles Trial – final sample size ratios: - $\theta_1 = n_{E_1}/n_C = 0.278 \Rightarrow \text{low power}$ - $\theta_2 = n_{E_2}/n_C = 0.611 \Rightarrow$ probably little power loss; specific trial parameters $\{\pi_C, \Delta\} = \{0.55, 0.30\}$ should be evaluated **Point:** For some nonnegligible imbalance in sample sizes across groups, there is little power loss. As imbalance increases, power loss becomes more dramatic. ### **Analogies:** TN-02 Setting: Patients evaluated periodically for a continuous outcome, β -cell retention, which may continue to change over a long period. Research challenge: Could an adaptive randomization procedure be based on a multivariate measure? **Throughout the trial:** Can allocation to the most effective treatment be based on evolving outcome data? ### **Summary:** Two techniques to reduce sample size and/or study duration were discussed. Remaining challenges: - How to define multivariate benefit & risk outcomes and/or univariate global measure. - WHI 8.5-year trial: Used incidences of several clinical events. - TN-02 shorter trial: Use a collection of auxiliary endpoints? Seek consistent, biogically plausible evidence. - How to use these outcomes in a response-adaptive randomization procedure and/or Group-sequential procedure: Frequent monitoring of multivariate outcome should distinguish among groups. #### References: #### Idea 1: - Freedman L, Anderson G, Kipnis V, et al. Approaches to monitoring the results of long-term disease prevention trials: examples from the Women's Health Initiative. *Control Clin Trials.* 1996, 17:509-25. - Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA. 2002, 288:321-33. #### Idea 2: - **Berry DA.** Bayesian statistics and the efficiency and ethics of clinical trials. *Statistical Science*. 2004, 19:175-187. - Giles FJ, Kantarjian HM, Cortes JE, et al. Adaptive randomized study of idarubicin and cytarabine (C) versus troxacitabine and idarubicin (E_1) versus troxacitabine and cytarabine (E_2) in untreated patients 50 years or older with adverse karyotype acute myeloid leukemia. J Clin Oncol. 2003, 21:1722-7.